--- title: "Multiple-Linear-Regression-Correction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Multiple-Linear-Regression-Correction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` First the package should be loaded: ```{r setup} library(aws.wrfsmn) ``` The example data to use will be 'eva' and should be call it with data: ```{r, echo = FALSE, results = FALSE} data(eva) ``` ```{r} head(eva) ``` A Multiple Linear Regression is made between the predictand (observed evaporation) and the following predictors: ```{r} test.predictors <- c('OUT_PREC', 'OUT_EVAP', 'OUT_RUNOFF', 'OUT_BASEFLOW', 'OUT_SOIL_MOIST_lyr_1', 'OUT_EVAP_CANOP', 'OUT_SURF_TEMP') ``` Using multiple.guidance function to obtain the regression coefficients: ```{r} mg <- multiple.guidance(input.data = eva, predictand = 'evapo_obs', predictors = test.predictors) mg ``` The evaluation of the correction applied from the mg regression is: ```{r} evaluation.eva <- mg.evaluation(input.data = eva, predictand = 'evapo_obs', predictors = test.predictors, var.model = 'OUT_EVAP', lmodel = mg) head(evaluation.eva) ``` Finally, the monthly data is calculated to be plot: ```{r, out.width = "100%", fig.align = "center", echo=FALSE} ploting(daily2monthly(evaluation.eva[[1]])) ```